from nltk.tokenize import sent_tokenize, word_tokenize import documents import datetime import time import bs4 import os import re def write(search_terms, results, timetaken, expanded_terms): out_path = os.path.join("searches", "search_%s-%f.md" % ("+".join(expanded_terms)[:20], time.time())) with open(out_path, "w", encoding='utf-8') as f: f.write("# Search %s\n" % str(datetime.datetime.now())) f.write("**Using search terms: %s**\n" % " ".join(search_terms)) f.write("*Found %d results in %.2f minutes*\n\n" % (len(results), timetaken / 60)) for docid, score in results[:30]: fullpath = os.path.join(os.path.dirname(os.path.abspath(__file__)), documents.get_document_name_by_id(docid)) title, ext = os.path.splitext(os.path.split(fullpath)[-1]) f.write("### %.2f - [%s](file://%s) [%s]\n" % (score, title, fullpath, ext[1:].upper())) f.write("###### *%s*\n" % fullpath) f.write("%s\n" % get_snippet(fullpath, expanded_terms)) f.write("\n") return out_path def get_snippet(docpath, expanded_terms, num_to_get = 2): with open(docpath, "r", encoding='utf-8') as f: soup = bs4.BeautifulSoup(f.read(), "lxml") text = " ".join([e.text for e in soup.find("div", {"class": "mw-parser-output"}).findChildren(recursive = True)]) found_sentences = [] for sentence in sent_tokenize(text): if len(found_sentences) == num_to_get: break found_terms = re.search("|".join(expanded_terms), sentence, re.IGNORECASE) if found_terms is not None: sentence = shorten_sentence(sentence, expanded_terms) new_sentence = sentence for match in re.finditer("|".join(expanded_terms), sentence, re.IGNORECASE): if not new_sentence[match.start() - 4:match.start()].startswith("*"): new_sentence = new_sentence.replace(match.group(0), "**" + match.group(0) + "**").replace("\n", " ") found_sentences.append(new_sentence) return "*[...]* " + "\t*[...]*\t".join(found_sentences) + " *[...]*" def shorten_sentence(sentence, expanded_terms): if len(sentence) > 200: match = re.search("|".join(expanded_terms), sentence, re.IGNORECASE) add_to_end = 0 startindex = match.start() - 106 if startindex < 0: add_to_end += abs(startindex) startindex = 0 endindex = match.end() + 106 + add_to_end return " ".join(word_tokenize(sentence[startindex:endindex])[1:-1]) else: return sentence if __name__ == "__main__": # print(get_snippet("../Wikibooks/Wikibooks/History of video games Print version Timeline.html", ['cosmonaut', 'astronaut', 'spaceman'])) print(shorten_sentence('star cloud") maryan....constellation ("collection of stars") marmeg....comet ("star rock") mommeg....meteor ("space rock") mammeg....meteorite ("sky rock") The following are vehicles and derivatives that are specific to one of the above physical spheres: Vehicles Specific to Various Spheres mompur....spaceship momper....travel through space momput....cosmonaut, astronaut mampur....airplane mamper....fly mamput....flyer, pilot mempur....automobile memper....ride, drive memput....rider, driver mimpur....shipobmimpar....submarine mimper....sail, navigate mimput....sailor, navigatorobmimput....submariner mumpur....subway mumper....tunnel, go by metro mumput....metro rider Note: marpur = starship and muarpur = lunar module Names of the Planets[edit | edit source] Here are the names of the planets in our solar system.', ["cosmonaut", 'astronaut', 'spaceman']))