aboutsummaryrefslogtreecommitdiffstats
path: root/anime-face-detector/nms
diff options
context:
space:
mode:
Diffstat (limited to 'anime-face-detector/nms')
-rw-r--r--anime-face-detector/nms/.gitignore2
-rw-r--r--anime-face-detector/nms/__init__.py0
-rw-r--r--anime-face-detector/nms/cpu_nms.pyx68
-rw-r--r--anime-face-detector/nms/gpu_nms.hpp2
-rw-r--r--anime-face-detector/nms/gpu_nms.pyx31
-rw-r--r--anime-face-detector/nms/nms_kernel.cu144
-rw-r--r--anime-face-detector/nms/py_cpu_nms.py38
7 files changed, 0 insertions, 285 deletions
diff --git a/anime-face-detector/nms/.gitignore b/anime-face-detector/nms/.gitignore
deleted file mode 100644
index 40d7cb4..0000000
--- a/anime-face-detector/nms/.gitignore
+++ /dev/null
@@ -1,2 +0,0 @@
-*.c
-*.cpp
diff --git a/anime-face-detector/nms/__init__.py b/anime-face-detector/nms/__init__.py
deleted file mode 100644
index e69de29..0000000
--- a/anime-face-detector/nms/__init__.py
+++ /dev/null
diff --git a/anime-face-detector/nms/cpu_nms.pyx b/anime-face-detector/nms/cpu_nms.pyx
deleted file mode 100644
index 71fbab1..0000000
--- a/anime-face-detector/nms/cpu_nms.pyx
+++ /dev/null
@@ -1,68 +0,0 @@
-# --------------------------------------------------------
-# Fast R-CNN
-# Copyright (c) 2015 Microsoft
-# Licensed under The MIT License [see LICENSE for details]
-# Written by Ross Girshick
-# --------------------------------------------------------
-
-import numpy as np
-cimport numpy as np
-
-cdef inline np.float32_t max(np.float32_t a, np.float32_t b):
- return a if a >= b else b
-
-cdef inline np.float32_t min(np.float32_t a, np.float32_t b):
- return a if a <= b else b
-
-def cpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh):
- cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0]
- cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1]
- cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2]
- cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:, 3]
- cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4]
-
- cdef np.ndarray[np.float32_t, ndim=1] areas = (x2 - x1 + 1) * (y2 - y1 + 1)
- cdef np.ndarray[np.int64_t, ndim=1] order = scores.argsort()[::-1]
-
- cdef int ndets = dets.shape[0]
- cdef np.ndarray[np.int_t, ndim=1] suppressed = \
- np.zeros((ndets), dtype=np.int)
-
- # nominal indices
- cdef int _i, _j
- # sorted indices
- cdef int i, j
- # temp variables for box i's (the box currently under consideration)
- cdef np.float32_t ix1, iy1, ix2, iy2, iarea
- # variables for computing overlap with box j (lower scoring box)
- cdef np.float32_t xx1, yy1, xx2, yy2
- cdef np.float32_t w, h
- cdef np.float32_t inter, ovr
-
- keep = []
- for _i in range(ndets):
- i = order[_i]
- if suppressed[i] == 1:
- continue
- keep.append(i)
- ix1 = x1[i]
- iy1 = y1[i]
- ix2 = x2[i]
- iy2 = y2[i]
- iarea = areas[i]
- for _j in range(_i + 1, ndets):
- j = order[_j]
- if suppressed[j] == 1:
- continue
- xx1 = max(ix1, x1[j])
- yy1 = max(iy1, y1[j])
- xx2 = min(ix2, x2[j])
- yy2 = min(iy2, y2[j])
- w = max(0.0, xx2 - xx1 + 1)
- h = max(0.0, yy2 - yy1 + 1)
- inter = w * h
- ovr = inter / (iarea + areas[j] - inter)
- if ovr >= thresh:
- suppressed[j] = 1
-
- return keep
diff --git a/anime-face-detector/nms/gpu_nms.hpp b/anime-face-detector/nms/gpu_nms.hpp
deleted file mode 100644
index 68b6d42..0000000
--- a/anime-face-detector/nms/gpu_nms.hpp
+++ /dev/null
@@ -1,2 +0,0 @@
-void _nms(int* keep_out, int* num_out, const float* boxes_host, int boxes_num,
- int boxes_dim, float nms_overlap_thresh, int device_id);
diff --git a/anime-face-detector/nms/gpu_nms.pyx b/anime-face-detector/nms/gpu_nms.pyx
deleted file mode 100644
index 55878db..0000000
--- a/anime-face-detector/nms/gpu_nms.pyx
+++ /dev/null
@@ -1,31 +0,0 @@
-# --------------------------------------------------------
-# Faster R-CNN
-# Copyright (c) 2015 Microsoft
-# Licensed under The MIT License [see LICENSE for details]
-# Written by Ross Girshick
-# --------------------------------------------------------
-
-import numpy as np
-cimport numpy as np
-
-assert sizeof(int) == sizeof(np.int32_t)
-
-cdef extern from "gpu_nms.hpp":
- void _nms(np.int32_t*, int*, np.float32_t*, int, int, float, int)
-
-def gpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh,
- np.int32_t device_id=0):
- cdef int boxes_num = dets.shape[0]
- cdef int boxes_dim = dets.shape[1]
- cdef int num_out
- cdef np.ndarray[np.int32_t, ndim=1] \
- keep = np.zeros(boxes_num, dtype=np.int32)
- cdef np.ndarray[np.float32_t, ndim=1] \
- scores = dets[:, 4]
- cdef np.ndarray[np.int64_t, ndim=1] \
- order = scores.argsort()[::-1]
- cdef np.ndarray[np.float32_t, ndim=2] \
- sorted_dets = dets[order, :]
- _nms(&keep[0], &num_out, &sorted_dets[0, 0], boxes_num, boxes_dim, thresh, device_id)
- keep = keep[:num_out]
- return list(order[keep])
diff --git a/anime-face-detector/nms/nms_kernel.cu b/anime-face-detector/nms/nms_kernel.cu
deleted file mode 100644
index 038a590..0000000
--- a/anime-face-detector/nms/nms_kernel.cu
+++ /dev/null
@@ -1,144 +0,0 @@
-// ------------------------------------------------------------------
-// Faster R-CNN
-// Copyright (c) 2015 Microsoft
-// Licensed under The MIT License [see fast-rcnn/LICENSE for details]
-// Written by Shaoqing Ren
-// ------------------------------------------------------------------
-
-#include "gpu_nms.hpp"
-#include <vector>
-#include <iostream>
-
-#define CUDA_CHECK(condition) \
- /* Code block avoids redefinition of cudaError_t error */ \
- do { \
- cudaError_t error = condition; \
- if (error != cudaSuccess) { \
- std::cout << cudaGetErrorString(error) << std::endl; \
- } \
- } while (0)
-
-#define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))
-int const threadsPerBlock = sizeof(unsigned long long) * 8;
-
-__device__ inline float devIoU(float const * const a, float const * const b) {
- float left = max(a[0], b[0]), right = min(a[2], b[2]);
- float top = max(a[1], b[1]), bottom = min(a[3], b[3]);
- float width = max(right - left + 1, 0.f), height = max(bottom - top + 1, 0.f);
- float interS = width * height;
- float Sa = (a[2] - a[0] + 1) * (a[3] - a[1] + 1);
- float Sb = (b[2] - b[0] + 1) * (b[3] - b[1] + 1);
- return interS / (Sa + Sb - interS);
-}
-
-__global__ void nms_kernel(const int n_boxes, const float nms_overlap_thresh,
- const float *dev_boxes, unsigned long long *dev_mask) {
- const int row_start = blockIdx.y;
- const int col_start = blockIdx.x;
-
- // if (row_start > col_start) return;
-
- const int row_size =
- min(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
- const int col_size =
- min(n_boxes - col_start * threadsPerBlock, threadsPerBlock);
-
- __shared__ float block_boxes[threadsPerBlock * 5];
- if (threadIdx.x < col_size) {
- block_boxes[threadIdx.x * 5 + 0] =
- dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 0];
- block_boxes[threadIdx.x * 5 + 1] =
- dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 1];
- block_boxes[threadIdx.x * 5 + 2] =
- dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 2];
- block_boxes[threadIdx.x * 5 + 3] =
- dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 3];
- block_boxes[threadIdx.x * 5 + 4] =
- dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 4];
- }
- __syncthreads();
-
- if (threadIdx.x < row_size) {
- const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x;
- const float *cur_box = dev_boxes + cur_box_idx * 5;
- int i = 0;
- unsigned long long t = 0;
- int start = 0;
- if (row_start == col_start) {
- start = threadIdx.x + 1;
- }
- for (i = start; i < col_size; i++) {
- if (devIoU(cur_box, block_boxes + i * 5) > nms_overlap_thresh) {
- t |= 1ULL << i;
- }
- }
- const int col_blocks = DIVUP(n_boxes, threadsPerBlock);
- dev_mask[cur_box_idx * col_blocks + col_start] = t;
- }
-}
-
-void _set_device(int device_id) {
- int current_device;
- CUDA_CHECK(cudaGetDevice(&current_device));
- if (current_device == device_id) {
- return;
- }
- // The call to cudaSetDevice must come before any calls to Get, which
- // may perform initialization using the GPU.
- CUDA_CHECK(cudaSetDevice(device_id));
-}
-
-void _nms(int* keep_out, int* num_out, const float* boxes_host, int boxes_num,
- int boxes_dim, float nms_overlap_thresh, int device_id) {
- _set_device(device_id);
-
- float* boxes_dev = NULL;
- unsigned long long* mask_dev = NULL;
-
- const int col_blocks = DIVUP(boxes_num, threadsPerBlock);
-
- CUDA_CHECK(cudaMalloc(&boxes_dev,
- boxes_num * boxes_dim * sizeof(float)));
- CUDA_CHECK(cudaMemcpy(boxes_dev,
- boxes_host,
- boxes_num * boxes_dim * sizeof(float),
- cudaMemcpyHostToDevice));
-
- CUDA_CHECK(cudaMalloc(&mask_dev,
- boxes_num * col_blocks * sizeof(unsigned long long)));
-
- dim3 blocks(DIVUP(boxes_num, threadsPerBlock),
- DIVUP(boxes_num, threadsPerBlock));
- dim3 threads(threadsPerBlock);
- nms_kernel<<<blocks, threads>>>(boxes_num,
- nms_overlap_thresh,
- boxes_dev,
- mask_dev);
-
- std::vector<unsigned long long> mask_host(boxes_num * col_blocks);
- CUDA_CHECK(cudaMemcpy(&mask_host[0],
- mask_dev,
- sizeof(unsigned long long) * boxes_num * col_blocks,
- cudaMemcpyDeviceToHost));
-
- std::vector<unsigned long long> remv(col_blocks);
- memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks);
-
- int num_to_keep = 0;
- for (int i = 0; i < boxes_num; i++) {
- int nblock = i / threadsPerBlock;
- int inblock = i % threadsPerBlock;
-
- if (!(remv[nblock] & (1ULL << inblock))) {
- keep_out[num_to_keep++] = i;
- unsigned long long *p = &mask_host[0] + i * col_blocks;
- for (int j = nblock; j < col_blocks; j++) {
- remv[j] |= p[j];
- }
- }
- }
- *num_out = num_to_keep;
-
- CUDA_CHECK(cudaFree(boxes_dev));
- CUDA_CHECK(cudaFree(mask_dev));
-}
diff --git a/anime-face-detector/nms/py_cpu_nms.py b/anime-face-detector/nms/py_cpu_nms.py
deleted file mode 100644
index 54e7b25..0000000
--- a/anime-face-detector/nms/py_cpu_nms.py
+++ /dev/null
@@ -1,38 +0,0 @@
-# --------------------------------------------------------
-# Fast R-CNN
-# Copyright (c) 2015 Microsoft
-# Licensed under The MIT License [see LICENSE for details]
-# Written by Ross Girshick
-# --------------------------------------------------------
-
-import numpy as np
-
-def py_cpu_nms(dets, thresh):
- """Pure Python NMS baseline."""
- x1 = dets[:, 0]
- y1 = dets[:, 1]
- x2 = dets[:, 2]
- y2 = dets[:, 3]
- scores = dets[:, 4]
-
- areas = (x2 - x1 + 1) * (y2 - y1 + 1)
- order = scores.argsort()[::-1]
-
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
- xx1 = np.maximum(x1[i], x1[order[1:]])
- yy1 = np.maximum(y1[i], y1[order[1:]])
- xx2 = np.minimum(x2[i], x2[order[1:]])
- yy2 = np.minimum(y2[i], y2[order[1:]])
-
- w = np.maximum(0.0, xx2 - xx1 + 1)
- h = np.maximum(0.0, yy2 - yy1 + 1)
- inter = w * h
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
-
- inds = np.where(ovr <= thresh)[0]
- order = order[inds + 1]
-
- return keep