diff options
Diffstat (limited to 'terms.py')
-rw-r--r-- | terms.py | 15 |
1 files changed, 10 insertions, 5 deletions
@@ -30,15 +30,18 @@ LEM = WordNetLemmatizer() def main(): numdocs = documents.get_num_documents() + with database.Database() as db: + startat = db.get_max_linked_terms() - 1 #docid = random.randint(1, numdocs) #parse_document(docid, documents.get_document_name_by_id(docid), numdocs) - for document_id in range(1, numdocs): + for document_id in range(startat, numdocs): parse_document(document_id, documents.get_document_name_by_id(document_id), numdocs) #break def parse_region(raw_text, region_weight, document_id): + print("d: %d; w: %d; len = %d" % (document_id, region_weight, len(raw_text))) terms = word_tokenize(raw_text) terms = [re.sub(r"[^a-zA-Z0-9\s]", "", term).rstrip().lower() for term in terms] terms = [LEM.lemmatize(i) for i in terms if i != "" and i not in STOPWORDS] @@ -85,10 +88,12 @@ def parse_document(document_id, document_path, numdocs): weighted_linked_terms += region_linked_terms # parse the main text, it has a weight of 1 - text = [e.text for e in soup.find("div", {"class": "mw-parser-output"}).findChildren(recursive = True)] - region_weighted_terms, region_linked_terms = parse_region(" ".join(text), 1, document_id) - weighted_terms += region_weighted_terms - weighted_linked_terms += region_linked_terms + text = " ".join([e.text for e in soup.find("div", {"class": "mw-parser-output"}).findChildren(recursive = True)]) + # split large texts into more manageable chunks + for splittext in [text[i:i+99999] for i in range(0, len(text), 99999)]: + region_weighted_terms, region_linked_terms = parse_region(splittext, 1, document_id) + weighted_terms += region_weighted_terms + weighted_linked_terms += region_linked_terms # parse html headers elemtexts = [] |