1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer
from nltk.stem import WordNetLemmatizer
from nltk.util import ngrams
import collections
import documents
import database
import bs4
import re
STOPWORDS = set(stopwords.words('english')).difference({
"how", "because", "through", "or", "as", "about", "not",
"no", "who", "of", "can", "over", "you"
}).union({chr(i) for i in range(97, 123)}.difference({"a", "i"}))
LEM = WordNetLemmatizer()
def main():
numdocs = documents.get_num_documents()
for document_id in range(1, numdocs):
parse_document(document_id, documents.get_document_name_by_id(document_id), numdocs)
# break
def parse_document(document_id, document_path, numdocs):
with open(document_path, "r") as f:
soup = bs4.BeautifulSoup(f.read(), "lxml")
text = [e.text for e in soup.find("div", {"class": "mw-parser-output"}).findChildren(recursive = True)]
text = [re.sub(r"[^a-zA-Z\s]", "", i).rstrip().lower() for i in text]
terms = []
for i in text:
terms += re.split(r"\s+|\n", i)
terms = [LEM.lemmatize(i) for i in terms if i != "" and i not in STOPWORDS]
terms_counted = collections.Counter(terms)
with database.Database() as db:
db.append_terms(terms)
print("[%f%%] Added %d terms from docid: %d" % ((document_id/numdocs)*100, len(terms_counted), document_id))
db.append_terms_in_document(document_id, terms_counted)
print("Appended term frequency too")
if __name__ == "__main__":
main()
|