aboutsummaryrefslogtreecommitdiffstats
path: root/anime-face-detector/faster_rcnn_wrapper.py
diff options
context:
space:
mode:
Diffstat (limited to 'anime-face-detector/faster_rcnn_wrapper.py')
-rw-r--r--anime-face-detector/faster_rcnn_wrapper.py204
1 files changed, 204 insertions, 0 deletions
diff --git a/anime-face-detector/faster_rcnn_wrapper.py b/anime-face-detector/faster_rcnn_wrapper.py
new file mode 100644
index 0000000..3ea09ff
--- /dev/null
+++ b/anime-face-detector/faster_rcnn_wrapper.py
@@ -0,0 +1,204 @@
+import tensorflow as tf
+from tensorflow.contrib.slim.python.slim.nets.resnet_v1 import resnet_v1_block, resnet_v1
+import tensorflow.contrib.slim as slim
+from tensorflow.contrib.slim.python.slim.nets.resnet_utils import arg_scope, conv2d_same
+import numpy as np
+
+
+class FasterRCNNSlim:
+
+ def __init__(self):
+ self._blocks = [resnet_v1_block('block1', base_depth=64, num_units=3, stride=2),
+ resnet_v1_block('block2', base_depth=128, num_units=4, stride=2),
+ resnet_v1_block('block3', base_depth=256, num_units=23, stride=1),
+ resnet_v1_block('block4', base_depth=512, num_units=3, stride=1)]
+ self._image = tf.placeholder(tf.float32, shape=[1, None, None, 3])
+ self._im_info = tf.placeholder(tf.float32, shape=[3])
+
+ self._anchor_scales = [4, 8, 16, 32]
+ self._num_scales = len(self._anchor_scales)
+
+ self._anchor_ratios = [1]
+ self._num_ratios = len(self._anchor_ratios)
+
+ self._num_anchors = self._num_scales * self._num_ratios
+ self._scope = 'resnet_v1_101'
+
+ with arg_scope([slim.conv2d, slim.conv2d_in_plane, slim.conv2d_transpose, slim.separable_conv2d,
+ slim.fully_connected],
+ weights_regularizer=tf.contrib.layers.l2_regularizer(0.0001),
+ biases_regularizer=tf.no_regularizer,
+ biases_initializer=tf.constant_initializer(0.0)):
+ # in _build_network
+ initializer = tf.random_normal_initializer(stddev=0.01)
+ initializer_bbox = tf.random_normal_initializer(stddev=0.001)
+ # in _image_to_head
+ with slim.arg_scope(self._resnet_arg_scope()):
+ # in _build_base
+ with tf.variable_scope(self._scope, self._scope):
+ net_conv = conv2d_same(self._image, 64, 7, stride=2, scope='conv1')
+ net_conv = tf.pad(net_conv, [[0, 0], [1, 1], [1, 1], [0, 0]])
+ net_conv = slim.max_pool2d(net_conv, [3, 3], stride=2, padding='VALID', scope='pool1')
+ net_conv, _ = resnet_v1(net_conv, self._blocks[:-1], global_pool=False, include_root_block=False,
+ scope=self._scope)
+ with tf.variable_scope(self._scope, self._scope):
+ # in _anchor_component
+ with tf.variable_scope('ANCHOR-default'):
+ height = tf.to_int32(tf.ceil(self._im_info[0] / 16.0))
+ width = tf.to_int32(tf.ceil(self._im_info[1] / 16.0))
+
+ shift_x = tf.range(width) * 16
+ shift_y = tf.range(height) * 16
+ shift_x, shift_y = tf.meshgrid(shift_x, shift_y)
+ sx = tf.reshape(shift_x, [-1])
+ sy = tf.reshape(shift_y, [-1])
+ shifts = tf.transpose(tf.stack([sx, sy, sx, sy]))
+ k = width * height
+ shifts = tf.transpose(tf.reshape(shifts, [1, k, 4]), perm=[1, 0, 2])
+
+ anchors = np.array([[-24, -24, 39, 39], [-56, -56, 71, 71],
+ [-120, -120, 135, 135], [-248, -248, 263, 263]], dtype=np.int32)
+
+ a = anchors.shape[0]
+ anchor_constant = tf.constant(anchors.reshape([1, a, 4]), dtype=tf.int32)
+ length = k * a
+ anchors_tf = tf.reshape(anchor_constant + shifts, shape=[length, 4])
+ anchors = tf.cast(anchors_tf, dtype=tf.float32)
+ self._anchors = anchors
+ self._anchor_length = length
+
+ # in _region_proposal
+ rpn = slim.conv2d(net_conv, 512, [3, 3], trainable=False, weights_initializer=initializer,
+ scope='rpn_conv/3x3')
+ rpn_cls_score = slim.conv2d(rpn, self._num_anchors * 2, [1, 1], trainable=False,
+ weights_initializer=initializer, padding='VALID', activation_fn=None,
+ scope='rpn_cls_score')
+ rpn_cls_score_reshape = self._reshape(rpn_cls_score, 2, 'rpn_cls_score_reshape')
+ rpn_cls_prob_reshape = self._softmax(rpn_cls_score_reshape, 'rpn_cls_prob_reshape')
+ # rpn_cls_pred = tf.argmax(tf.reshape(rpn_cls_score_reshape, [-1, 2]), axis=1, name='rpn_cls_pred')
+ rpn_cls_prob = self._reshape(rpn_cls_prob_reshape, self._num_anchors * 2, 'rpn_cls_prob')
+ rpn_bbox_pred = slim.conv2d(rpn, self._num_anchors * 4, [1, 1], trainable=False,
+ weights_initializer=initializer, padding='VALID', activation_fn=None,
+ scope='rpn_bbox_pred')
+
+ # in _proposal_layer
+ with tf.variable_scope('rois'):
+ post_nms_topn = 300
+ nms_thresh = 0.7
+ scores = rpn_cls_prob[:, :, :, self._num_anchors:]
+ scores = tf.reshape(scores, [-1])
+ rpn_bbox_pred = tf.reshape(rpn_bbox_pred, [-1, 4])
+
+ boxes = tf.cast(self._anchors, rpn_bbox_pred.dtype)
+ widths = boxes[:, 2] - boxes[:, 0] + 1.0
+ heights = boxes[:, 3] - boxes[:, 1] + 1.0
+ ctr_x = boxes[:, 0] + widths * 0.5
+ ctr_y = boxes[:, 1] + heights * 0.5
+
+ dx = rpn_bbox_pred[:, 0]
+ dy = rpn_bbox_pred[:, 1]
+ dw = rpn_bbox_pred[:, 2]
+ dh = rpn_bbox_pred[:, 3]
+
+ pred_ctr_x = dx * widths + ctr_x
+ pred_ctr_y = dy * heights + ctr_y
+ pred_w = tf.exp(dw) * widths
+ pred_h = tf.exp(dh) * heights
+
+ pred_boxes0 = pred_ctr_x - pred_w * 0.5
+ pred_boxes1 = pred_ctr_y - pred_h * 0.5
+ pred_boxes2 = pred_ctr_x + pred_w * 0.5
+ pred_boxes3 = pred_ctr_y + pred_h * 0.5
+
+ b0 = tf.clip_by_value(pred_boxes0, 0, self._im_info[1] - 1)
+ b1 = tf.clip_by_value(pred_boxes1, 0, self._im_info[0] - 1)
+ b2 = tf.clip_by_value(pred_boxes2, 0, self._im_info[1] - 1)
+ b3 = tf.clip_by_value(pred_boxes3, 0, self._im_info[0] - 1)
+
+ proposals = tf.stack([b0, b1, b2, b3], axis=1)
+ indices = tf.image.non_max_suppression(proposals, scores, max_output_size=post_nms_topn,
+ iou_threshold=nms_thresh)
+ boxes = tf.to_float(tf.gather(proposals, indices))
+ # rpn_scores = tf.reshape(tf.gather(scores, indices), [-1, 1])
+
+ batch_inds = tf.zeros([tf.shape(indices)[0], 1], dtype=tf.float32)
+ rois = tf.concat([batch_inds, boxes], 1)
+
+ # in _crop_pool_layer
+ with tf.variable_scope('pool5'):
+ batch_ids = tf.squeeze(tf.slice(rois, [0, 0], [-1, 1], name='bath_id'), [1])
+ bottom_shape = tf.shape(net_conv)
+ height = (tf.to_float(bottom_shape[1]) - 1) * 16.0
+ width = (tf.to_float(bottom_shape[2]) - 1) * 16.0
+ x1 = tf.slice(rois, [0, 1], [-1, 1], name='x1') / width
+ y1 = tf.slice(rois, [0, 2], [-1, 1], name='y1') / height
+ x2 = tf.slice(rois, [0, 3], [-1, 1], name='x2') / width
+ y2 = tf.slice(rois, [0, 4], [-1, 1], name='y2') / height
+ bboxes = tf.stop_gradient(tf.concat([y1, x1, y2, x2], 1))
+ pool5 = tf.image.crop_and_resize(net_conv, bboxes, tf.to_int32(batch_ids), [7, 7], name='crops')
+ # in _head_to_tail
+ with slim.arg_scope(self._resnet_arg_scope()):
+ fc7, _ = resnet_v1(pool5, self._blocks[-1:], global_pool=False, include_root_block=False,
+ scope=self._scope)
+ fc7 = tf.reduce_mean(fc7, axis=[1, 2])
+ with tf.variable_scope(self._scope, self._scope):
+ # in _region_classification
+ cls_score = slim.fully_connected(fc7, 2, weights_initializer=initializer, trainable=False,
+ activation_fn=None, scope='cls_score')
+ cls_prob = self._softmax(cls_score, 'cls_prob')
+ # cls_pred = tf.argmax(cls_score, 'cls_pred')
+ bbox_pred = slim.fully_connected(fc7, 2*4, weights_initializer=initializer_bbox, trainable=False,
+ activation_fn=None, scope='bbox_pred')
+ self._cls_score = cls_score
+ self._cls_prob = cls_prob
+ self._bbox_pred = bbox_pred
+ self._rois = rois
+
+ stds = np.tile(np.array([0.1, 0.1, 0.2, 0.2]), 2)
+ means = np.tile(np.array([0.0, 0.0, 0.0, 0.0]), 2)
+ self._bbox_pred *= stds
+ self._bbox_pred += means
+
+ @staticmethod
+ def _resnet_arg_scope():
+ batch_norm_params = {
+ 'is_training': False,
+ 'decay': 0.997,
+ 'epsilon': 1e-5,
+ 'scale': True,
+ 'trainable': False,
+ 'updates_collections': tf.GraphKeys.UPDATE_OPS
+ }
+ with arg_scope([slim.conv2d],
+ weights_regularizer=slim.l2_regularizer(0.0001),
+ weights_initializer=slim.variance_scaling_initializer(),
+ trainable=False,
+ activation_fn=tf.nn.relu,
+ normalizer_fn=slim.batch_norm,
+ normalizer_params=batch_norm_params):
+ with arg_scope([slim.batch_norm], **batch_norm_params) as arg_sc:
+ return arg_sc
+
+ @staticmethod
+ def _reshape(bottom, num_dim, name):
+ input_shape = tf.shape(bottom)
+ with tf.variable_scope(name):
+ to_caffe = tf.transpose(bottom, [0, 3, 1, 2])
+ reshaped = tf.reshape(to_caffe, [1, num_dim, -1, input_shape[2]])
+ to_tf = tf.transpose(reshaped, [0, 2, 3, 1])
+ return to_tf
+
+ @staticmethod
+ def _softmax(bottom, name):
+ if name.startswith('rpn_cls_prob_reshape'):
+ input_shape = tf.shape(bottom)
+ bottom_reshaped = tf.reshape(bottom, [-1, input_shape[-1]])
+ reshaped_score = tf.nn.softmax(bottom_reshaped, name=name)
+ return tf.reshape(reshaped_score, input_shape)
+ return tf.nn.softmax(bottom, name=name)
+
+ def test_image(self, sess, image, im_info):
+ return sess.run([self._cls_score, self._cls_prob, self._bbox_pred, self._rois], feed_dict={
+ self._image: image,
+ self._im_info: im_info
+ })