aboutsummaryrefslogtreecommitdiffstats
path: root/anime-face-detector/nms/nms_kernel.cu
diff options
context:
space:
mode:
Diffstat (limited to 'anime-face-detector/nms/nms_kernel.cu')
-rw-r--r--anime-face-detector/nms/nms_kernel.cu144
1 files changed, 144 insertions, 0 deletions
diff --git a/anime-face-detector/nms/nms_kernel.cu b/anime-face-detector/nms/nms_kernel.cu
new file mode 100644
index 0000000..038a590
--- /dev/null
+++ b/anime-face-detector/nms/nms_kernel.cu
@@ -0,0 +1,144 @@
+// ------------------------------------------------------------------
+// Faster R-CNN
+// Copyright (c) 2015 Microsoft
+// Licensed under The MIT License [see fast-rcnn/LICENSE for details]
+// Written by Shaoqing Ren
+// ------------------------------------------------------------------
+
+#include "gpu_nms.hpp"
+#include <vector>
+#include <iostream>
+
+#define CUDA_CHECK(condition) \
+ /* Code block avoids redefinition of cudaError_t error */ \
+ do { \
+ cudaError_t error = condition; \
+ if (error != cudaSuccess) { \
+ std::cout << cudaGetErrorString(error) << std::endl; \
+ } \
+ } while (0)
+
+#define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))
+int const threadsPerBlock = sizeof(unsigned long long) * 8;
+
+__device__ inline float devIoU(float const * const a, float const * const b) {
+ float left = max(a[0], b[0]), right = min(a[2], b[2]);
+ float top = max(a[1], b[1]), bottom = min(a[3], b[3]);
+ float width = max(right - left + 1, 0.f), height = max(bottom - top + 1, 0.f);
+ float interS = width * height;
+ float Sa = (a[2] - a[0] + 1) * (a[3] - a[1] + 1);
+ float Sb = (b[2] - b[0] + 1) * (b[3] - b[1] + 1);
+ return interS / (Sa + Sb - interS);
+}
+
+__global__ void nms_kernel(const int n_boxes, const float nms_overlap_thresh,
+ const float *dev_boxes, unsigned long long *dev_mask) {
+ const int row_start = blockIdx.y;
+ const int col_start = blockIdx.x;
+
+ // if (row_start > col_start) return;
+
+ const int row_size =
+ min(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
+ const int col_size =
+ min(n_boxes - col_start * threadsPerBlock, threadsPerBlock);
+
+ __shared__ float block_boxes[threadsPerBlock * 5];
+ if (threadIdx.x < col_size) {
+ block_boxes[threadIdx.x * 5 + 0] =
+ dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 0];
+ block_boxes[threadIdx.x * 5 + 1] =
+ dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 1];
+ block_boxes[threadIdx.x * 5 + 2] =
+ dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 2];
+ block_boxes[threadIdx.x * 5 + 3] =
+ dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 3];
+ block_boxes[threadIdx.x * 5 + 4] =
+ dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 4];
+ }
+ __syncthreads();
+
+ if (threadIdx.x < row_size) {
+ const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x;
+ const float *cur_box = dev_boxes + cur_box_idx * 5;
+ int i = 0;
+ unsigned long long t = 0;
+ int start = 0;
+ if (row_start == col_start) {
+ start = threadIdx.x + 1;
+ }
+ for (i = start; i < col_size; i++) {
+ if (devIoU(cur_box, block_boxes + i * 5) > nms_overlap_thresh) {
+ t |= 1ULL << i;
+ }
+ }
+ const int col_blocks = DIVUP(n_boxes, threadsPerBlock);
+ dev_mask[cur_box_idx * col_blocks + col_start] = t;
+ }
+}
+
+void _set_device(int device_id) {
+ int current_device;
+ CUDA_CHECK(cudaGetDevice(&current_device));
+ if (current_device == device_id) {
+ return;
+ }
+ // The call to cudaSetDevice must come before any calls to Get, which
+ // may perform initialization using the GPU.
+ CUDA_CHECK(cudaSetDevice(device_id));
+}
+
+void _nms(int* keep_out, int* num_out, const float* boxes_host, int boxes_num,
+ int boxes_dim, float nms_overlap_thresh, int device_id) {
+ _set_device(device_id);
+
+ float* boxes_dev = NULL;
+ unsigned long long* mask_dev = NULL;
+
+ const int col_blocks = DIVUP(boxes_num, threadsPerBlock);
+
+ CUDA_CHECK(cudaMalloc(&boxes_dev,
+ boxes_num * boxes_dim * sizeof(float)));
+ CUDA_CHECK(cudaMemcpy(boxes_dev,
+ boxes_host,
+ boxes_num * boxes_dim * sizeof(float),
+ cudaMemcpyHostToDevice));
+
+ CUDA_CHECK(cudaMalloc(&mask_dev,
+ boxes_num * col_blocks * sizeof(unsigned long long)));
+
+ dim3 blocks(DIVUP(boxes_num, threadsPerBlock),
+ DIVUP(boxes_num, threadsPerBlock));
+ dim3 threads(threadsPerBlock);
+ nms_kernel<<<blocks, threads>>>(boxes_num,
+ nms_overlap_thresh,
+ boxes_dev,
+ mask_dev);
+
+ std::vector<unsigned long long> mask_host(boxes_num * col_blocks);
+ CUDA_CHECK(cudaMemcpy(&mask_host[0],
+ mask_dev,
+ sizeof(unsigned long long) * boxes_num * col_blocks,
+ cudaMemcpyDeviceToHost));
+
+ std::vector<unsigned long long> remv(col_blocks);
+ memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks);
+
+ int num_to_keep = 0;
+ for (int i = 0; i < boxes_num; i++) {
+ int nblock = i / threadsPerBlock;
+ int inblock = i % threadsPerBlock;
+
+ if (!(remv[nblock] & (1ULL << inblock))) {
+ keep_out[num_to_keep++] = i;
+ unsigned long long *p = &mask_host[0] + i * col_blocks;
+ for (int j = nblock; j < col_blocks; j++) {
+ remv[j] |= p[j];
+ }
+ }
+ }
+ *num_out = num_to_keep;
+
+ CUDA_CHECK(cudaFree(boxes_dev));
+ CUDA_CHECK(cudaFree(mask_dev));
+}