aboutsummaryrefslogtreecommitdiffstats
path: root/anime-face-detector/main.py
blob: 11f7e4dc1cf1cb9b92b3cd631bfee2e6f3e5049c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import numpy as np
import cv2
from faster_rcnn_wrapper import FasterRCNNSlim
import tensorflow as tf
import argparse
import os
import json
import time
from nms_wrapper import NMSType, NMSWrapper


def detect(sess, rcnn_cls, image):
    # pre-processing image for Faster-RCNN
    img_origin = image.astype(np.float32, copy=True)
    img_origin -= np.array([[[102.9801, 115.9465, 112.7717]]])

    img_shape = img_origin.shape
    img_size_min = np.min(img_shape[:2])
    img_size_max = np.max(img_shape[:2])

    img_scale = 600 / img_size_min
    if np.round(img_scale * img_size_max) > 1000:
        img_scale = 1000 / img_size_max
    img = cv2.resize(img_origin, None, None, img_scale, img_scale, cv2.INTER_LINEAR)
    img_info = np.array([img.shape[0], img.shape[1], img_scale], dtype=np.float32)
    img = np.expand_dims(img, 0)

    # test image
    _, scores, bbox_pred, rois = rcnn_cls.test_image(sess, img, img_info)

    # bbox transform
    boxes = rois[:, 1:] / img_scale

    boxes = boxes.astype(bbox_pred.dtype, copy=False)
    widths = boxes[:, 2] - boxes[:, 0] + 1
    heights = boxes[:, 3] - boxes[:, 1] + 1
    ctr_x = boxes[:, 0] + 0.5 * widths
    ctr_y = boxes[:, 1] + 0.5 * heights
    dx = bbox_pred[:, 0::4]
    dy = bbox_pred[:, 1::4]
    dw = bbox_pred[:, 2::4]
    dh = bbox_pred[:, 3::4]
    pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis]
    pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis]
    pred_w = np.exp(dw) * widths[:, np.newaxis]
    pred_h = np.exp(dh) * heights[:, np.newaxis]
    pred_boxes = np.zeros_like(bbox_pred, dtype=bbox_pred.dtype)
    pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w
    pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h
    pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w
    pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h
    # clipping edge
    pred_boxes[:, 0::4] = np.maximum(pred_boxes[:, 0::4], 0)
    pred_boxes[:, 1::4] = np.maximum(pred_boxes[:, 1::4], 0)
    pred_boxes[:, 2::4] = np.minimum(pred_boxes[:, 2::4], img_shape[1] - 1)
    pred_boxes[:, 3::4] = np.minimum(pred_boxes[:, 3::4], img_shape[0] - 1)
    return scores, pred_boxes


def load_file_from_dir(dir_path):
    ret = []
    for file in os.listdir(dir_path):
        path_comb = os.path.join(dir_path, file)
        if os.path.isdir(path_comb):
            ret += load_file_from_dir(path_comb)
        else:
            ret.append(path_comb)
    return ret


def fmt_time(dtime):
    if dtime <= 0:
        return '0:00.000'
    elif dtime < 60:
        return '0:%02d.%03d' % (int(dtime), int(dtime * 1000) % 1000)
    elif dtime < 3600:
        return '%d:%02d.%03d' % (int(dtime / 60), int(dtime) % 60, int(dtime * 1000) % 1000)
    else:
        return '%d:%02d:%02d.%03d' % (int(dtime / 3600), int((dtime % 3600) / 60), int(dtime) % 60,
                                      int(dtime * 1000) % 1000)


def main():
    parser = argparse.ArgumentParser(description='Anime face detector demo')
    parser.add_argument('-i', help='The input path of an image or directory', required=True, dest='input', type=str)
    parser.add_argument('-o', help='The output json path of the detection result', dest='output')
    parser.add_argument('-nms', help='Change the threshold for non maximum suppression',
                        dest='nms_thresh', default=0.3, type=float)
    parser.add_argument('-conf', help='Change the threshold for class regression', dest='conf_thresh',
                        default=0.8, type=float)
    parser.add_argument('-model', help='Specify a new path for model', dest='model', type=str,
                        default='model/res101_faster_rcnn_iter_60000.ckpt')
    parser.add_argument('-nms-type', help='Type of nms', choices=['PY_NMS', 'CPU_NMS', 'GPU_NMS'], dest='nms_type',
                        default='CPU_NMS')

    args = parser.parse_args()

    assert os.path.exists(args.input), 'The input path does not exists'

    if os.path.isdir(args.input):
        files = load_file_from_dir(args.input)
    else:
        files = [args.input]
    file_len = len(files)

    if args.nms_type == 'PY_NMS':
        nms_type = NMSType.PY_NMS
    elif args.nms_type == 'CPU_NMS':
        nms_type = NMSType.CPU_NMS
    elif args.nms_type == 'GPU_NMS':
        nms_type = NMSType.GPU_NMS
    else:
        raise ValueError('Incorrect NMS Type, not supported yet')

    nms = NMSWrapper(nms_type)

    cfg = tf.ConfigProto()
    cfg.gpu_options.allow_growth = True
    sess = tf.Session(config=cfg)

    net = FasterRCNNSlim()
    saver = tf.train.Saver()

    saver.restore(sess, args.model)

    result = {}

    time_start = time.time()

    for idx, file in enumerate(files):
        elapsed = time.time() - time_start
        eta = (file_len - idx) * elapsed / idx if idx > 0 else 0
        print('[%d/%d] Elapsed: %s, ETA: %s >> %s' % (idx+1, file_len, fmt_time(elapsed), fmt_time(eta), file))
        img = cv2.imread(file)
        scores, boxes = detect(sess, net, img)
        boxes = boxes[:, 4:8]
        scores = scores[:, 1]
        keep = nms(np.hstack([boxes, scores[:, np.newaxis]]).astype(np.float32), args.nms_thresh)
        boxes = boxes[keep, :]
        scores = scores[keep]
        inds = np.where(scores >= args.conf_thresh)[0]
        scores = scores[inds]
        boxes = boxes[inds, :]

        result[file] = []
        for i in range(scores.shape[0]):
            x1, y1, x2, y2 = boxes[i, :].tolist()
            new_result = {'score': float(scores[i]),
                          'bbox': [x1, y1, x2, y2]}
            result[file].append(new_result)

            if args.output is None:
                cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
        if args.output:
            if ((idx+1) % 1000) == 0:
                # saving the temporary result
                with open(args.output, 'w') as f:
                    json.dump(result, f)
        else:
            cv2.imshow(file, img)

    if args.output:
        with open(args.output, 'w') as f:
            json.dump(result, f)
    else:
        cv2.waitKey()


if __name__ == '__main__':
    main()